Pattern Analysis for Machine Olfaction: A Review

نویسنده

  • Ricardo Gutierrez-Osuna
چکیده

Pattern analysis constitutes a critical building block in the development of gas sensor array instruments capable of detecting, identifying, and measuring volatile compounds, a technology that has been proposed as an artificial substitute of the human olfactory system. The successful design of a pattern analysis system for machine olfaction requires a careful consideration of the various issues involved in processing multivariate data: signal-preprocessing, feature extraction, feature selection, classification, regression, clustering, and validation. A considerable number of methods from statistical pattern recognition, neural networks, chemometrics, machine learning, and biological cybernetics has been used to process electronic nose data. The objective of this review paper is to provide a summary and guidelines for using the most widely used pattern analysis techniques, as well as to identify research directions that are at the frontier of sensor-based machine olfaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent concepts about sense of smell, odorant receptors and physiology of olfaction- an insight

The sense of olfaction reached its zenith in development much earlier than other special senses. Olfaction is much more acute than the other senses, exhibits both high sensitivity for odours and high discrimination between them. This plays a very important role even in the social and behavioral aspects of human beings. Recent studies using molecular genetics, electrophysiology and behavioral an...

متن کامل

Experiences in Pattern Recognition for Machine Olfaction

Pattern recognition is essential for translating complex olfactory sensor responses into simple outputs that are relevant to users. Many approaches to pattern recognition have been applied in this field, including multivariate statistics (e.g. discriminant analysis), artificial neural networks (ANNs) and support vector machines (SVMs). Reviewing our experience of using these techniques with man...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001